
1

Trade-offs in
High-Performance

Numerical Library Design

Lois Curfman McInnes
Mathematics and Computer Science Division

Argonne National Laboratory

The Conference on High Speed Computing
April 22-25, 2002

Salishan Lodge, Gleneden Beach, Oregon

2

Outline
• Motivation

– Complex, multi-physics, multi-scale applications
– Distributed, multi-level memory hierarchies

• High-Performance Scientific Components
– What are components?
– Common Component Architecture (CCA)
– Center for Component Technology for Terascale

Simulation Software (CCTTSS)

• Parallel Components for PDEs and Optimization
– Approach
– Performance

• Ongoing Challenges

3

Collaborators

• Co-developers of PETSc
– Satish Balay, Kris Buschelman, Bill Gropp,

Dinesh Kaushik, Matt Knepley, Barry Smith,
Hong Zhang

• Co-developers of TAO
– Steve Benson, Jorge Moré, Jason Sarich

• CCA/CCTTSS collaborators
– Include ANL, Indiana Univ., LANL, LLNL,

ORNL, PNNL, SNL, Univ. of Utah, etc.
– Led by Rob Armstrong (SNL)
– Special thanks to L. Freitag and B. Norris

4

Acknowledgements

• U.S. Department of Energy – Office of Science
– Core funding in the MCS Division of Argonne through

the Mathematical, Information, and Computational
Science (MICS) program

– Advanced Computational Testing and Simulation
(ACTS) toolkit

– Scientific Discovery through Advanced Computing
(SciDAC) program

• National Science Foundation
– Multi-Model Multi-Domain Computational Methods in

Aerodynamics and Acoustics

5

Motivating Scientific Applications

Discretization

Algebraic Solvers

Parallel I/O

Meshes

Data Redistribution

Physics

Optimization

Derivative Computation
Diagnostics

Steering

Visualization

Adaptive Solution

Astrophysics

Molecular
structures

Aerodynamics
Fusion

6

Target Architectures

• Systems have an increasingly deep memory
hierarchy

• Time to reference main memory 100’s of cycles

SMP

Interconnect

CPUs

Cache

Main Memory

CPUs

Cache

Main Memory

...etc.

7

Challenges
• Community Perspective

– Life-cycle costs of applications are increasing
• Require the combined use of software developed by different groups
• Difficult to leverage expert knowledge and advances in subfields
• Difficult to obtain portable performance

• Individual Scientist Perspective
– Too much energy focused on too many details

• Little time to think about modeling, physics, mathematics
• Fear of bad performance without custom code
• Even when code reuse is possible, it is far too difficult

• Our Perspective
– How to manage complexity?

• Numerical software tools that work together
• New algorithms (e.g., interactive/dynamic techniques, algorithm

composition)
• Multi-model, multi-physics simulations

8

Outline
• Motivation

– Complex, multi-physics, multi-scale applications
– Distributed, multi-level memory hierarchies

• High-Performance Scientific Components
– What are components?
– Common Component Architecture (CCA)
– Center for Component Technology for Terascale

Simulation Software (CCTTSS)

• Parallel Components for PDEs and Optimization
– Approach
– Performance

• Ongoing Challenges

9

Why Use Components?

• Promote software reuse
– “The best software is code you don’t have to write.”

[Steve Jobs]

• Reuse, through cost amortization, allows
– thoroughly tested code
– highly optimized code
– developer team specialization

• Also reuse of skills, practice, and design

Hero programmer producing single-purpose,
monolithic, tightly-coupled parallel codesX

[Thanks to Craig Rasmussen (LANL) for the base of this slide.]

10

What are differences between
objects and components?

• More similar than different
– Object: a software black box
– Component: object +

• OO techniques are useful for building individual components by
relatively small teams; component technologies facilitate sharing of
code developed by different groups by addressing issues in
– Language interoperability

• Via interface definition language (IDL)

– Well-defined abstract interfaces
• Enable “plug-and-play”

– Dynamic composability
• Components can discover information about their environment (e.g., interface

discovery) from framework and connected components

• Can easily convert from an object orientation to a component
orientation
– Automatic tools can help with conversion (ongoing work by C. Rasmussen

and M. Sottile, LANL)
• For more info: C. Szyperski, Component Software: Beyond Object-

Oriented Programming, ACM Press, New York, 1998

11

CCA History and Participants
• 1998: CCA Forum originated

– Participation from researchers who were exploring one-to-one software
interfacing in the DOE ACTS Toolkit program

– Open to everyone interested in HPC components
– See http://www.cca-forum.org
– Active CCA Forum participants include

• ANL - Lori Freitag, Kate Keahey, Jay Larson, Lois McInnes, Boyana Norris

• Indiana Univ. - Randall Bramley, Dennis Gannon

• LANL - Craig Rasmussen, Matt Sotille

• LLNL - Scott Kohn, Gary Kumfert, Tom Epperly

• ORNL - David Bernholdt, Jim Kohl

• PNNL - Jarek Nieplocha, Theresa Windus

• SNL - Rob Armstrong, Ben Allan, Curt Janssen, Jaideep Ray

• Univ. of Utah - Steve Parker

• And others as well …

• 2001: Center for Component Technology for Terascale
Simulation Software (CCTTSS) founded
– Support from the DOE SciDAC Initiative
– CCTTSS team is a subset of the CCA Forum
– Leader: Rob Armstrong (SNL)
– See http://www.cca-forum.org/ccttss

12

CCTTSS Multi-Pronged Approach

• HPC component specification and framework –
coordinator Scott Kohn (LLNL)
– Unified reference framework implementation targeting both SPMD and

distributed environments
– Tools for language interoperability via a Scientific Interface Definition

Language (SIDL)

• Suite of scientific components – coordinator Lois Curfman
McInnes (ANL)
– Linear and nonlinear algebra, optimization, mesh management, scientific data,

visualization, steering, fault tolerance, scientific application domains, etc.

• Parallel data redistribution – coordinator Jim Kohl (ORNL)
– Model coupling, visualization

• Applications integration – coordinator David Bernholdt (ORNL)
– General outreach to the scientific community
– Close feedback loop for users/developers of CCA technology
– Collaborate with climate and chemistry applications domains as well as other

groups

CCTTSS Leader: Rob Armstrong (SNL)

13

Requirements for a High-Performance
Component Architecture

• Simple/Flexible
– to adopt
– to understand
– to use

• Support a composition mechanism that does
not impede high-performance component
interactions

• Permit the SPMD paradigm in component form
• Meant to live with and rely on other

commodity component frameworks to provide
services ...

– e.g., JavaBeans, CORBA, …

14

Existing component architecture standards such as
CORBA, Java Beans, and COM do not provide support for
parallel components.

sec110-6 10 -4
10

-1

CORBA/JavaCCAMPI

Latency
between
components

Goals of the Common
Component Architecture (CCA)

• Desire to build scientific applications by
hooking together components

• DOE Common Component Architecture (CCA)
provides a mechanism for interoperability of
high-performance components developed by
many different groups in different languages
or frameworks.

15

CCA Approach
• CCA specification dictates a basic set of

interfaces (and corresponding behaviors) that
components should implement to be CCA
compliant.
– Ports define the connection model for

component interactions
– Provides/Uses design pattern

• Components are manipulatable in a
framework.

• CCA specification doesn’t dictate frameworks
or runtime environment.
– Create components that are usable under

a variety of frameworks
– Provide a means for discovering interfaces
– Specifically exclude how the components

are linked; that is the job of a framework
– Provide language-independent means for

creating components (via SIDL)

Component-Based
Scientific Application

Discretization
Engine

Implicit Solve

Visualization

Ports

Link

ANL

SNL

LLNL

PNNL

LANL

UU

IU

ORNL

framework

16

A A A A

B

MPI

MPI

Process

MPI application using CCA for interaction between
components A and B within the same address space

Adaptive mesh
component
written by user1

Solver component
written by user2

Direct
Connection

supplied by
framework at

compile/runtime

CCA Concept of
SPMD Components

Proc1 Proc2 Proc3 etc...

BBB

17

CCA Collective Port Modularizes
Processor/Data Decomposition

parallel
visualization component

collective port
connecting M procs
with N procs

Combining previous parallel component with another
parallel component in a different framework

container composed of
mesh and solver

components

18

CCA References

• Web sites
– CCA Forum

• http://www.cca-forum.org
– Center for Component Technology for Terascale Simulation

Software (CCA SciDAC Center)
• http://www.cca-forum.org/ccttss

– Sample component software and applications
• http://www.cca-forum.org/cca-sc01

• Introductory paper
– R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L.

McInnes, S. Parker, and B. Smolinski, Toward a Common
Component Architecture for High-Performance Scientific
Computing, Proceedings of the High-Performance Distributed
Computing Conference, pp. 115-124, 1999.

19

More CCA Papers
• B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland, L. McInnes, and B. Smith,

Parallel Components for PDEs and Optimization: Some Issues and
Experiences, preprint ANL/MCS-P932-0202, February 2002, Parallel Computing
(to appear).

• B. Allan, R. Armstrong, A. Wolfe, J. Ray, D. Bernholdt, and J. Kohl, The CCA
Core Specification in a Distributed Memory SPMD Framework, August
2001, Concurrency and Computation: Practice and Experience (to appear).

• T. Epperly, S. Kohn, and G. Kumfert. Component Technology for High-
Performance Scientific Simulation Software, Proceedings of the
International Federation for Information Processing’s Working Conference on
Software Architectures for Scientific Computing, 2000.

• S. Parker, A Component-based Architecture for Parallel Multi-Physics
PDE Simulations, Proceedings of the 2002 International Conference on
Computational Science (to appear).

• M. Sottile and C. Rasmussen, Automated Component Creation for Legacy
C++ and Fortran Codes, Proceedings of the First International IFIP/ACM
Working Conference on Component Deployment, June 2002 (submitted).

• R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko,
and M. Yechuri, A Component Based Services Architecture for Building
Distributed Applications, Proceedings of High Performance Distributed
Computing, 2000.

• K. Keahey, P. Beckman, and J. Ahrens, Ligature: A Component Architecture
for High-Performance Applications, International Journal of High-
Performance Computing Applications, 2000.

20

Related Work

• N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J.
Darlington, Optimization of Component-based Applications
within a Grid Environment, Proceedings of SC2001.

• C. René, T. Priol, and G. Alléon, Code Coupling Using Parallel
CORBA Objects, Proceedings of the International Federation for
Information Processing’s Working Conference on Software
Architectures for Scientific Computing, 2000.

• E. de Sturler, J. Hoeflinger, L. Kale, and M. Bhandarkar, A New
Approach to Software Integration Frameworks for Multi-
physics Simulation Codes, Proceedings of the International
Federation for Information Processing’s Working Conference on
Software Architectures for Scientific Computing, 2000.

• R. Sistla, A. Dovi, P. Su, and R. Shanmugasundaram, Aircraft
Design Problem Implementation Under the Common Object
Request Broker Architecture, Proceedings of the 40th

AIAA/ASME/ASCH/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, 1999.

21

Outline
• Motivation

– Complex, multi-physics, multi-scale applications
– Distributed, multi-level memory hierarchies

• High-Performance Scientific Components
– What are components?
– Common Component Architecture (CCA)
– Center for Component Technology for Terascale

Simulation Software (CCTTSS)

• Parallel Components for PDEs and
Optimization
– Approach
– Performance

• Ongoing Challenges

22

Software for Nonlinear PDEs and
Related Optimization Problems

• Goal: For problems arising from PDEs, support the
general solution of F(u) = 0

User provides:
– Code to evaluate F(u)
– Code to evaluate Jacobian of F(u) (optional)

• or use sparse finite difference (FD) approximation
• or use automatic differentiation (AD)

– AD support via collaboration with P. Hovland and B. Norris (see
http://www.mcs.anl.gov/autodiff)

• Goal: Solve related optimization problems, generally
min f(u), u < u < u , c < c(u) < c
Simple example: unconstrained minimization: min f(u)

User provides:
– Code to evaluate f(u)
– Code to evaluate gradient and Hessian of f(u) (optional)

• or use sparse FD or AD

l lu u

23

What are the algorithmic needs
of our target applications?

• Large-scale, PDE-based applications
– multi-rate, multi-scale, multi-component

• Need
– Fully or semi-implicit solvers
– Multi-level algorithms
– Support for adaptivity
– Support for user-defined customizations (e.g.,

physics-informed preconditioners, transfer
operators, and smoothers)

Reference: Salishan presentation by D. Keyes

24

Newton’s Method
Nonlinear equations: Solve f(u) = 0, where f: R R

f’(u) δ u = -f (u)
u = u + δ u

Unconstrained minimization: min f(u), where f: R R

f(u) δ u = - f (u)
u = u + δ u

• Can achieve quadratic convergence when sufficiently close to solution
• Can extend radius of convergence with line search strategies,

trust region techniques, or pseudo-transient continuation.

l-1l

l

l

l-1 l-1

l-1l l
ll-1 l-12

n n

n

Solve approximately
with preconditioned
Krylov method

Solve approximately
with preconditioned
Krylov method

25

Interface Issues
• How to hide complexity, yet allow

customization and access to a range of
algorithmic options?

• How to achieve portable performance?
• How to interface among external tools?

– including multiple libraries developed by different
groups that provide similar functionality (e.g., linear
algebra software)

• Criteria for evaluation of success
– efficiency (both per node performance and scalability)
– usability
– extensibility

26

Two-Phased Approach

• Phase 1
– Develop parallel, object-oriented numerical libraries

• OO techniques are quite effective for development with
a moderate sized team

• Provide foundation of algorithms, data structures,
implementations

• Phase 2
– Develop CCA-compliant component interfaces

• Leverage existing code
• Provide a more effective means for managing

interactions among code developed by different groups

27

Parallel Numerical Libraries: PETSc and TAO

• PETSc: Portable, Extensible Toolkit for Scientific
Computation
– S. Balay, K. Buschelman, B. Gropp, D. Kaushik, M. Knepley, L. C. McInnes,

B. Smith, H. Zhang
– http://www.mcs.anl.gov/petsc
– Targets the parallel solution of large-scale PDE-based applications
– Begun in 1991, now over 8,500 downloads since 1995

• TAO: Toolkit for Advanced Optimization
– S. Benson, L. C. McInnes, J. Moré, J. Sarich
– http://www.mcs.anl.gov/tao
– Targets the solution of large-scale optimization problems
– Begun in 1997 as part of DOE ACTS Toolkit

• Both are freely available and supported research toolkits
– Hyperlinked documentation, many examples
– Usable from Fortran 77/90, C, and C++

• Both are portable to any parallel system supporting MPI, including
– Tightly coupled systems

• Cray T3E, SGI Origin, IBM SP, HP 9000, Sun Enterprise

– Loosely coupled systems, e.g., networks of workstations
• Compaq, HP, IBM, SGI, Sun
• PCs running Linux or Windows

28

Some Related Work in Numerical Libraries

• Krylov methods and preconditioners (for large, sparse problems)

– Trilinos – Heroux et al. http://www.cs.sandia.gov/Trilinos

– Parpre – Eijkhout and Chan http://www.cs.utk.edu/~eijkhout/parpre.html

– Hypre – Cleary et al. http://www.llnl.gov/casc/hypre

– SPARSKIT, etc. – Saad www.cs.umn.edu/~saad

• Nonlinear solvers
– KINSOL – Hindmarsh http://www.llnl.gov/casc/PVODE

– NITSol – Walker and Pernice
• Optimization software

– Hilbert Class Library - Gockenback, Petro, and Symes
http://www.trip.caam.rice.edu/txt/hcldoc/html

– OPT++ - Meza http://csmr.ca.sandia.gov/projects/opt/opt++.html

– DAKOTA - Eldred et al. http://endo.sandia.gov/DAKOTA

– COOOL - Deng and Gouivera http://coool.mines.edu

– Veltisto - Biros and Ghattas http://www.cs.nyu.edu/~biros/veltisto

(Not an exhaustive list)

29

Programming Model
• Goals

– Portable, runs everywhere
– Performance
– Scalable parallelism

• Approach
– Distributed memory, “shared-nothing”

• Requires only a compiler (single node or processor)
• Access to data on remote machines through MPI

– Can still exploit “compiler discovered” parallelism on
each node (e.g., SMP)

– Hide within parallel objects the details of the
communication

– User orchestrates communication at a higher
abstract level than message passing

30

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Others

Indices Block Indices Stride Others

Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Others

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Others

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Others

Krylov Subspace Methods

Matrices

PETSc Numerical Libraries

Distributed Arrays

Matrix-free

31

Semi-smooth Methods Others

Complementarity

Newton Trust Region GPCG Interior Point LMVM KT Others

Bound Constrained Optimization

TAO Solvers

• PETSc (initial interface)
• Trilinos (SNL - new capability via ESI –

thanks to M. Heroux and A. Williams)
• Global Arrays (PNNL – under development by

J. Nieplocha et al.)
• Etc.

Levenberg
Marquardt

Gauss-
Newton

LMVM Levenberg Marquardt
with Bound Constraints Others

Nonlinear Least Squares
LMVM with

Bound Constraints

Line Search Trust Region

Newton-based Methods Limited Memory
Variable Metric
(LMVM) Method

Unconstrained Minimization
Conjugate Gradient Methods

Fletcher-
Reeves

Polak-
Ribiére

Polak-
Ribiére-Plus

Others

TAO interfaces to external libraries for
parallel vectors, matrices, and linear solvers

32

PETSc codeUser code

Nonlinear PDE Solution

AD-generated code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Application Driver

• Automatic Differentiation (AD): a technology for automatically augmenting
computer programs, including arbitrarily complex simulations, with statements for
the computation of derivatives, also known as sensitivities.
• AD Collaborators: P. Hovland and B. Norris (http://www.mcs.anl.gov/autodiff)

33

Application
Initialization

Post-
Processing

PETSc Solve
F(u) = 0

Nonlinear PDE Solution

PETSc codeUser code AD-generated code

Nonlinear Solvers (SNES)

Main Routine

Parallel Jacobian
assembly

Global-to-local
scatter of ghost values

Seed matrix
initialization

Local Jacobian
computation

Global-to-local
scatter of ghost values

Parallel function
assembly

Local Function
computation

34

Using AD with PETSc
Global-to-local

scatter of ghost values

Parallel function
assembly

Local Function
computation

Parallel Jacobian
assembly

Global-to-local
scatter of ghost values

Local Jacobian
computation

Local Function
computation

ADIFOR or ADIC

Local Jacobian
computation

Script file

Seed matrix
initialization

• Fully automated for structured meshes
• Currently manual setup for unstructured
meshes; can be automated

Current status:

35

Hybrid FD/AD Strategy
for Jacobian-vector Products

• FD
– F’(x) v = [F(x+hv) - F(x)] / h

– costs approximately 1
function evaluation

– challenges in computing
the differencing
parameter, h, since we
must balance truncation
and round-off errors

• AD
– costs approximately 2

function evaluations
– no difficulties in

parameter estimation

• Hybrid FD/AD
– switch from FD to AD

when ||F|| / ||F || < δ
0

0 1000 2000 3000 4000 5000 6000
−14

−12

−10

−8

−6

−4

−2

0

2
mesh dim: 194x34x34
Newton / GMRES(k) / RASM

Time (sec)

Lo
g(

10
)

of
 R

es
id

ua
l N

or
m

Time for Nonlinear Solution: Hybrid FD/AD, s=1.e−5

8 processors
16 processors
32 processors
64 processors

Euler model;
transonic flow over
ONERA M6 wing

36

Some Experience in One-to-one Interfacing

• Linear solvers
– AMG http://www.mgnet.org/mgnet-codes-gmd.html

– BlockSolve95
http://www.mcs.anl.gov/BlockSolve95

– ILUTP http://www.cs.umn.edu/~saad/

– LUSOL http://www.sbsi-sol-optimize.com

– SPAI http://www.sam.math.ethz.ch/~grote/spai

– SuperLU http://www.nersc.gov/~xiaoye/SuperLU

• Optimization software
– TAO http://www.mcs.anl.gov/tao

– Veltisto http://www.cs.nyu.edu/~biros/veltisto

• Linear solvers
– PETSc http://www.mcs.anl.gov/petsc

• Mesh and discretization
tools
– Overture http://www.llnl.gov/CASC/Overture

– SAMRAI http://www.llnl.gov/CASC/SAMRAI

– SUMAA3d http://www.mcs.anl.gov/sumaa3d

• ODE solvers
– PVODE http://www.llnl.gov/CASC/PVODE

• Others
– Matlab http://www.mathworks.com

– ParMETIS
http://www.cs.umn.edu/~karypis/metis/parmetis

• Optimization software
– OOQP http://www.cs.wisc.edu/~swright/ooqp

– APPSPACK
http://cmsr.ca.sandia.gov/projects/apps.html

Between TAO and …

Between PETSc and …

37

Common Interface Specification

• Many-to-Many
couplings require
Many 2 interfaces
– Often a heroic effort to

understand details of both
codes

– Not a scalable solution

• Common Interfaces:
Reduce the Many-to-
Many problem to a
Many-to-One problem
– Allow interchangeability and

experimentation
– Difficulties

• Interface agreement
• Functionality limitations
• Maintaining performance

SUMAA3d

DAs

GRACE

Overture Trilinos

ISIS++

PETSc

D
a
t
a

E
S
I

SUMAA3d

DAs

GRACE

Overture
Trilinos

ISIS++

PETSc

Mesh management
libraries

Linear solver
libraries

Others …

Others …

38

Current Interface
Development Activities

CCA Forum Scientific Data
Components Working
Group

• Basic Scientific Data
Objects
– Lead: David Bernholdt, ORNL

• Unstructured Meshes
– Lead: Lori Freitag, ANL
– in collaboration with TSTT

(SciDAC ISIC)
• Structured Adaptive Mesh

Refinement
– Lead: Phil Colella, LBNL
– in collaboration with APDEC

(SciDAC ISIC)

Other Groups

• Equation Solver Interface
(ESI)
– Lead: Robert Clay (Terascale)
– Predates CCA, but moving

toward CCA compliance
• MxN Parallel Data

Redistribution
– Lead: Jim Kohl, ORNL
– Part of CCTTSS MxN Thrust

• Quantum Chemistry
– Leads: Curt Janssen, SNL;

Theresa Windus, PNNL
– Part of CCTTSS Applications

Integration Thrust

39

Optimization
ui+1 = ui + ααααs …

Optimization
ui+1 = ui + ααααs …

VisualizationVisualization

Linear Solver
H s = g

Linear Solver
H s = gH

g
s

g H fui+1 uo

function
solution
Hessian
gradient
coordinates
connectivity
step direction

f(u)
u
H
g
x
c
s

Compute min f(u)

Unconstrained Minimization Example Using
CCA Components

CCAFFEINE
Framework

Trilinos
PETScE

S
I Others …

DriverDriver

• CCAFFEINE – Common Component Architecture Fast Framework
Example in Need of Everything

• reference framework under development by B. Allan et al. (SNL)
• http://www.cca-forum.org/cafe.html

• TAO – Toolkit for Advanced Optimization
• http://www.mcs.anl.gov/tao

• Optimization component developers: S. Benson, L. C. McInnes,
B. Norris, and J. Sarich

Local Physics,
Discretization

Local Physics,
Discretization

Data
Redistribution

Data
Redistribution

40

Component Wiring Diagram

• Black boxes: components
• Blue boxes: provides ports
• Gold boxes: uses ports

Using GUI tool within CCAFFEINE framework

41

Performance on a Linux Cluster

• Newton method with line
search

• Solve linear systems with
the conjugate gradient
method and block Jacobi
preconditioning (with no-fill
incomplete factorization as
each block’s solver, and 1
block per process)

• Negligible component
overhead; good scalability

• Total execution time for a minimum surface minimization problem using a
fixed-sized 250x250 mesh.
• Dual 550 MHz Pentium-III nodes with 1 G RAM each, connected via Myrinet

42

CCA Compliance in TAO
• Paradigm shift; both TAO and the application become

components
– Each is required to provide a default constructor and to

implement the CCA component interface
• contains one method: “setServices” to register ports

– All interactions between components use ports
• Application provides a “go” port and uses “taoSolver” port
• TAO provides a “taoSolver” port

– There is no “main” routine
• Status

– TAO-1.4, released April 2002, includes CCA component
interfaces

– Ongoing work with T. Windus (PNNL) and C. Janssen
(SNL) on CCA-based chemistry applications that involve
optimization

43

Sample CCA Components and Applications

• Developed by CCA working group
for demonstration at SC01

• 4 applications using CCAFFEINE
– Unconstrained minimization problem on a

structured mesh
– Time-dependent PDE on an unstructured mesh
– Time-dependent PDE on an adaptive structured

mesh
– Ping-pong MxN

• More than 30 components
• Many components re-used in 3 apps
• Leverage and extend parallel

software developed at different
institutions

– including CUMULVS, GrACE, MPICH, ODEPACK,
PAWS, PETSc, PVM, TAO, and Trilinos

• Source code and documentation
available via

– http://www.cca-forum.org/cca-sc01

44

Component Re-Use

• Various services in CCAFFEINE
• Optimization solver

– TAOSolver
• Integrator

– IntegratorLSODE
• Linear solvers

– LinearSolver_Petra
– LinearSolver_PETSc

• Data description
– DADFactory

• Data redistribution
– CumulvsMxN

• Visualization
– CumulvsVizProxy

Component interfaces
to parallel data
management and
visualization tools

Component interfaces
to numerical libraries,
all using ESI

45

Summary
• Object-oriented techniques have been effective in enabling

individual libraries for high-performance numerics to explore of
trade-offs in
– Algorithms, data structures, data distribution, etc.

• The CCA Forum is developing component technology specifically
targeted at high-performance scientific simulations
– Addressing issues in language interoperability, dynamic

composability, abstract interfaces, parallel data redistribution, etc.
– Aiming to enable the exploration of trade-offs in the broader context

of multi-disciplinary simulations that require the combined use of
software developed by different groups

• We have a solid start through an interdisciplinary, multi-
institution team
– Open to everyone interested in high-performance scientific

components (see http://www.cca-forum.org for info on joining the
CCA mailing list)

• Lots of research challenges remain!

46

One Challenge:
Interfaces are central

• The CCA Forum participants do not pretend to be
experts in all phases of computation, but rather
just to be developing a standard way to exchange
component capabilities.

• Medium of exchange: interfaces
– Need experts in various areas to define sets of

domain-specific abstract interfaces
• scientific application domains, meshes, discretization,

nonlinear solvers, optimization, visualization, etc.

• Developing common interfaces is difficult
– Technical challenges
– Social challenges

This
means

you!

Many, many additional research issues remain.

47

CCA: http://www.cca-forum.org
PETSc: http://www.mcs.anl.gov/petsc

TAO: http://www.mcs.anl.gov/tao

More Information

